From a good idea to reaching millions: learning from CGIAR’s work on biofortification

Read the article

Consultative Group on International Agricultural Research (CGIAR) have been developing and implementing biofortified crops to address micro-nutrient deficiencies.

Deficiencies in micro-nutrients poses serious and widespread threats to health and economic development. This is known as ‘hidden hunger’. The conventional response has been supplementation or food fortification. However, these solutions involve high and recurrent costs, can be hard to organize in poor rural areas, and cannot always solve the problems.  CGIAR scientists proposed that the same health impacts could be achieved by breeding vitamins and minerals into the staple crops that people eat every day, such as sweet potato, wheat and rice. This is known as ‘biofortification’. CGIAR have been working on this for almost 25 years and invested $900m into development and implementation. More than 290 new varieties of 12 biofortified crops have been released or are in testing. This has benefited 10 million farming households globally to date.

The DELTA model can be used to scenario test various food systems with the view of adequate sustainable nutrition for the global population. This repeatedly demonstrates that on a global scale, animal-sourced foods are needed to meet nutrient requirements. However, this is based on the fact that current conventional crops do not have the same content of bioavailable micro-nutrients and trace elements that animal-sourced foods do. There may be potential for biofortified plants to better contribute to global nourishment and reduce requirements for animal foods. However, what is still unclear is whether those micro-nutrients in biofortified plant-based foods would have the enhanced bioavailability that characterises animal-sourced foods. In addition, biofortified plant-based foods may not have the ability to enhance the uptake of micro-nutrients from plant-derived sources, in the same way animal foods do as part of a meal. For example, haem iron from meat helps with the uptake of non-haem iron from plant sources. The ability of biofortified plants to do the same needs to be determined before concluding that biofortified crops can replace the role of animal foods in the global food system.

Read the article


Glossary

Photo by Tijana Drndarski on Unsplash

Multiple health and environmental impacts of foods

Read the article

Researchers at the University of Minnesota and Oxford University compared the environmental effects against the noncommunicable disease risk of certain food products.

It was found that foods associated with improved health outcomes; whole grain cereals, fruits, vegetables, legumes, nuts and olive oil, had amongst the lowest environmental impacts. In contrast, foods associated with the largest negative environmental impacts—unprocessed and processed red meat—were associated with the largest increases in disease risk. Chicken, dairy products, eggs, and refined grains had no significant impacts on either disease risk or environmental metrics. The report concluded that dietary transitions towards greater consumption of healthier foods would generally improve environmental sustainability.

These findings could help consumers, policy makers, and food companies to better understand the multiple health and environmental implications of food choices. However, this study looked at non-communicable disease incidence only, and did not address many other factors, not the least of which are nutrient deficiencies and the impact of nutrition on child development. For example, red meat plays a key role in the contribution to global requirements for multiple micro-nutrients such as iron, zinc and vitamin B12.

In addition, not all research agrees with the findings of this study. The Global Burden of Disease study found that a diet high in red and processed meat had very little impact on the risk of death or disability-adjusted life years. Diets low in healthy foods such as fruits and wholegrains, or high in sodium had a much higher mortality rate. Another study found that advice to eat less red meat is not backed by sufficient scientific evidence.

It is not as simple as eliminating red meat to improve both health and the environment. Many factors must be considered in conjunction when making decisions about the food system, as a thinking failure today will lead to a system failure tomorrow.

Read the article


Glossary

Photo by Alexandr Podvalny on Unsplash

Could the EAT-Lancet diet really save 10 million lives?

Read the article

A recent report published by EpiX in The Journal of Nutrition suggests that the EAT-Lancet proposed diet has no greater impact on mortality reduction than energy consumption changes.

The EAT-Lancet reference diet promotes an increase in plant-based food, and a reduction in red meat and sugar intake. The authors claim this can reduce premature deaths caused by diet-related noncommunicable diseases (NCD) by between 10.9 and 11.6 million per year. However, EpiX has identified that the EAT-Lancet report does not meet standards for transparency and replicability. Nor does it fully account for statistical uncertainty. Once uncertainty is accounted for and calculation errors are fixed, the impact on mortality reduction is less significant. In fact, the impact is no greater than changes in energy consumption that would prevent underweight, overweight and obesity alone. 

The aim of the EAT-Lancet report – to determine an optimal global diet from a sustainable food system to improve both human and planetary health – is to be commended. It asks all the right questions; the problem is the assumptions and methods used appear to have fallen short.  The report has had a massive uptake in media and social media, in part by a well-managed and orchestrated campaign by the EAT movement. According to Stockholm University, in the first 2 months after the report was released in January 2019, there were 5800 articles in 118 countries with over one million shares on social media.  Given the need to make the global food system more sustainable, and the concerns raised about the validity of the recommendations made in the EAT-Lancet report, this is worrisome.  It is important to avoid a thinking failure today to avoid a system failure tomorrow.

Read the article


Glossary

Photo by Anna Pelzer on Unsplash

Eat less red meat, scientists said. Now some believe that was bad advice

Read the article

An international collaboration of researchers concluded that the advice to eat less red meat is not backed by good scientific evidence.

If there are health benefits from eating less beef and pork, they are small, and not sufficient to tell individuals to change their meat-eating habits. Links are mostly in studies that observe groups of people, and even then, are only detectable in the largest groups.

This raises questions about the longstanding dietary guidelines urging people to eat less red meat. There have been concerns for years that red meat causes heart disease, cancer and other illnesses. However, if this is not backed by good scientific evidence it should not influence dietary guidelines. Red meat plays a key role in the contribution to multiple micro-nutrient requirements such as iron, zinc and vitamin B12. Research from the Global Burden of Disease study found that 11 million deaths and 255 million disability-adjusted life years were attributable to dietary risk factors, however the key risk factors were under-consumption of whole grains and fruits, and meat was found to have very little impact. It may be that high consumption of red meat is not inherently unhealthy, but rather a lack of choice and/or poor choice means a high level of red meat in the diet results in lower consumption of other healthy foods in the diet. In other words, is not red meat itself causing disease, but the lack of other foods as part of a balanced diet.

Therefore, it may not be in individual’s best interests to decrease red meat consumption, instead we should focus on consuming a balanced diet of healthy foods and sufficient nutrients.

Read the article


Glossary

Photo by Changyoung Koh on Unsplash