Finding harmony between plant-based and meat-eater diets

A recent survey commissioned by Finnish plant-based brand “Beanit” was carried out to explore the dispute on various diets, and the barriers this creates in behaviour change. It highlights the contrasting opinions of consumers, with vegetarians and meat-eaters alike feeling judged on their food choices.

Key findings of the study were that 64% of the surveyed population found public discussion around diets polarising, with 44% wanting to increase vegetarian foods in their diets. It is known that there is a gap between consumer intent and action, and this survey highlights the effect public scrutiny can have. Consumer discomfort between information and action can lead to a defensive or confrontational approach. This type of conversation is counterproductive in the transition to a reduced impact lifestyle. It fosters an environment of extremity between two groups.

The survey suggests a flexitarian diet offers the largest opportunity for Beanit’s plant-based market. The company takes the perspective that small changes made by large populations produce better results than a small group cutting out a certain behaviour entirely.

Although Beanit’s value in this may be to urge consumers to adopt a plant-based diet to increase sales, they addressed the results through a campaign named “Meat Saturday”. This encourages consumers to eat meat once a week on Saturdays. It looks to facilitate inclusivity between the labelled meat-eater and plant-based groups, offering the idea of mutual acceptability between diets.

The takeaway from the survey is relevant to any disruptive industry or product claiming to be a sustainable option. A positive, objective and inclusive narrative must be encouraged to facilitate progress towards sustainable behaviour change.


Photo by amirmasoud on Unsplash   

DELTA Model version 1.3 launched

The coloured bar shows the global average availability of each nutrient. The error bars show the range in availability in different parts of the world (10th and 90th population percentiles based on country level averages). While there are only a couple of nutrients where global availability is below target, the level of variation results in many more nutrients of concern at a country level.

Go to the model

The latest version of the DELTA Model is now available online. It features new insights into national and regional nutrient availability, as well as nutrient trade.

It’s common to talk about food trade between countries or regions, but less common to think about the movement of individual food nutrients around the world. For example, New Zealanders are probably very aware of our country’s exports of animal-sourced foods (like dairy and red meat), but likely haven’t thought about what this means in terms of the calcium or iron included in these exports.

DELTA 1.3 presents the domestic production of 29 food nutrients, the export and import dynamics of these nutrients, and how this measures up to meeting per capita per day nutrient targets for a country. It also presents how this availability differs in different parts of the world, showing the user the inequalities in access to different nutrients. The results are adjusted for waste, non-food uses and bioavailability in the same way as the rest of the DELTA calculations.

Another change is to the splash page first displayed to the user. This now features an outline of the global nutrition challenge that the world is facing, as well as a description of how the DELTA Model was designed to contribute to our understanding of this complex challenge. Further additions and changes can be found in the release notes.

Go to the model

Could this be the end to ‘dairy-free’ or ‘creamy’ plant-based food in the EU?

The Dairy Ban or ‘Amendment 171’, saw a narrow majority vote by the European Parliament in October 2020, preventing imitation of dairy products by non-dairy products.

This result saw a rally of 21 campaign groups, climate activists such as Greta Thunberg, and large dairy-alternative food producers such as Oatly protest the amendment. A petition against Amendment 171 created by ProVeg has received over 400,000 signatures. Further discussion on the amendment between Council, the Commission and the EU Parliament will continue this year.

Currently dairy terms in the EU are protected by law to ensure integrity of dairy products and to reduce misleading claims by non-dairy products. “Imitation or evocation” of existing dairy products is banned, including terms such as “almond milk” or “vegan cheese”. Amendment 171 furthers this to censor all use of dairy-related language, packaging and imaging in the marketing of plant-based foods. This would see dairy-alternative food producers banned from using terms such as “yoghurt-style”, “creamy”, or packaging that resembles the traditional milk carton and yoghurt pot shapes.

A recent study published in the Journal of Animal and Environmental Law found no difference in consumer perception of products coming from animals, or not, when branding incorporates wording traditionally associated with animal products, e.g. “milk”. Furthermore, omitting these words can lead to confusion from the consumer on taste and use of the product. However, a nutritional aspect was not included in the study, which could provide interesting results in the consumers perception of the product’s nutritional benefit.

Whether the dairy industry secures exclusive rights to the use of dairy-related language or not, this discussion comes down to the consumer. At the heart of both arguments is the push for consumer awareness. Further awareness will allow consumers to make informed decisions on the products they are purchasing and the impact these have on the environment and their health. All of which feeds into the sustainability of us as individuals, communities and globally.


Photo by NeONBRAND on Unsplash

Bottom trawling dragging up more than just fish

Read the article

A recent paper in Nature includes evidence that bottom trawling releases more CO2 emissions from carbon stores in marine sediment than the entire aviation industry.

Similar to how our soils store carbon, our oceans stock the largest amount of carbon on the planet. The paper suggests a framework to prioritise protection areas of the ocean that would see multiple benefits. These include preserving biodiversity, increasing yield for fisheries and securing marine carbon stocks.

Marine sediment stores carbon, which is released during bottom trawling, a common practise of fisheries. According to the present study, this activity was estimated to release 1 gigaton of carbon every year. Comparatively, the aviation industry releases about 918 million tonnes. However, all is not doom and gloom, as the paper also identifies areas that would be most beneficial to protect. They calculated 90% of the carbon disturbance could be avoided through protecting only 4% of the ocean, although this comes at a cost of 27 million tonnes of fish. Level of benefit in biodiversity, carbon and food are illustrated in various conservation strategies, dependent on the value placed on these factors.

This is not to say we should all rush to the airport, nor does this suggest forgoing fish and chip Friday. Rather, our ever-expanding database on the impact of human activities is a reminder of the system view we must take when exploring what a ‘sustainable’ lifestyle may look like. The global food system is full of intricacies, and the impact some food products have on the world could far surpass what seems reasonable.

As our breadth of knowledge from these individual studies increase, as do our capabilities in modelling and drawing evidence-based insights on our global food system. By also suggesting beneficial protection areas, rather than exclusively focusing on the impacts of bottom trawling, this paper may spark conversation rather than accusation between the fisheries industry and marine conservation groups.

Read the article


Photo by Aleksey Malinovski on Unsplash   

Could regenerative agriculture offer a solution to a more sustainable food system?

Read the white paper

Regenerative agriculture is a hot topic after suggestions it offers a partial remedy to climate change. However, for a concept surrounded with such high expectation, there is very little clarity around the definition of regenerative agriculture or it’s evidence-based benefits. The National Science Challenge, Our Land and Water New Zealand have published a white paper calling for further clarity and scientific testing of claims.

The term regenerative agriculture identifies an approach to food and farming systems that originated in the US focusing on five farming principles that claim to regenerate the land, rather than degrade it as many conventional practices have been found to do. These principles are: minimise soil disruption, keep soils covered, plant diverse crops, reduce fertiliser use, and practise rotational grazing. This idea has been embraced by the general public, leaving agricultural sectors around the world challenged to apply it to their own unique systems.

In our hunger for a quick fix to climate change, many have jumped on the assumption that regenerative agriculture could be a farmer’s way out of the flack often received for agriculture’s impacts on the environment. However, this may be an overly optimistic stance to a challenge that far exceeds the implementation of a regenerative mindset.

The white paper comes from over 200 representatives of the New Zealand agriculture sector to determine the next steps for regenerative agriculture research. Some of the recommendations include:

  • There is a requirement for further evidence-based research and trials on the true benefits, both environmental and economic, of regenerative agriculture for the farmer and food producers by assessing marketability and export value.
  • Application of the term ‘regenerative agriculture’ differs between countries. Although the term was conceived in the US, the mindset can be applied to other countries as long as it is made relevant, i.e. bringing in cultural aspects and maximising what the land may already have – for New Zealand this can be focusing on retaining soil carbon levels while the US looks at increasing soil carbon.

If food and farming is to be truly regenerative then a framework based on validated science is required. In the meantime, perhaps the concept of regenerative agriculture can act as a reminder to farmers and consumers of the care and consideration our environment deserves.

Read the white paper


Photo by Cam James on Unsplash

The life of your food: A discussion of LCAs

A low impact lifestyle has become desirable as the consequences of our excessive consumption are exposed. However, how do we assess the environmental impacts that our product choices have? Here, we discuss the use of life cycle analyses (LCAs) and the challenges and opportunities these pose in estimating the environmental impact of our food systems.

LCAs are an assessment method used to estimate the environmental impact of items over their lifetime. Such impacts can include water use, land use and greenhouse gas emissions (GHGs). When used correctly, they can be an effective comparative tool between similar items and highlight points in the value chain for improvement.

LCAs have a number of stages, and there are a range of types of LCA. Lifecycle inventories (LCIs) are first collected, which take account of all inputs and outputs within a system. This is followed by LCIAs (lifecycle impact assessment) where the impacts of LCIs are quantified and often differentiated into ecosystem impacts, human impacts and resource depletion. The commonly used term ‘footprint’ can represent a partial or full LCA, but only focuses on one aspect of the system. For example, a water footprint assesses the impact on water availability and quality across the entire life cycle of the product, but this would not include the impact on carbon emissions or land use.

LCAs are recognised as a useful impact assessment tool and as such have standardised methods set by ISO (International Organization for Standardisation). These guidelines have been interpreted differently throughout the literature, especially when applied to a system requiring the allocation of upstream products and inputs that serve in more than one system. For example, water used to irrigate rice paddies would form part of the water footprint of the rice. However, if the rice straw is also used as animal feed, how should the water footprint be allocated between the rice and animal production? Another issue with the methodology when applied to GHGs is that it typically only uses the GWP100 climate change metric, which can misinterpret short lived gas potentials e.g. methane. These limitations highlight the complexities of LCAs and the need for consistent methodology to improve the reliability of the assessment.

Using LCAs for the estimate of a product’s impact provides a landscape where the products can be compared. Although this can see misinterpretation, which will be discussed later, the complexities of this process can also offer up informative results for consumers and producers that may not seem obvious at first glance. This can be best used when comparing products that are similar in their final output (i.e. provide an equivalent user benefit), but may differ in their production chain e.g. competitor products, items produced in different regions and countries, or comparing similar products manufactured by the same company.

One product may have a variety of impact levels dependent on its origin, where it was purchased, right down to the practices of the individual farmer. Simple consumer choices may significantly decrease an individual’s impact. When choosing a discretionary food like chocolate, the choice of dark chocolate over milk or white chocolate significantly reduces the environmental impact. A difference in the nutritional composition of these products should be noted, although it is not a product we eat for its nutritional benefit. Furthermore, it has also been found using LCAs that a change to using 100% recyclables will result in minor reductions in an individual’s carbon footprint, and rather a focus on simply reducing consumption of packaging would see better results.

One of the most robust uses of LCAs is in the optimisation of company production lines. An internal LCA can pinpoint both the area with the most opportunity to reduce impact (e.g. manufacture, shipping, retail) or highlight one product having less impact than another, signifying its value for the company. Having numerical figures produced by LCAs can also provide tangible options for tracking improvements through regular analyses. For example, following its first LCA in 2009, Nespresso committed to reducing the carbon footprint of a cup of its coffee by 28% by 2020. Through these LCAs, Nespresso also investigated the impact between coffee systems to show the use of Nespresso was equal in carbon footprint with three other common coffee systems, while fully automated coffee systems had the highest carbon footprint. Not only does the direct product hold opportunity for more sustainable consumption choices; so too do the processes used to extract the coffee.

The benefits of the accurate use and awareness of LCAs go further than educating individuals or companies. As the literature on LCAs increases across a broader range of products, processes and end-of-life options, it allows consumers to make informed decisions in their quest for a truly low impact life. This also provides critical data to modelling platforms such as the DELTA Model.

With the complexities of LCAs comes the opportunity for misleading comparisons. This can be through comparing two products that have little similarity in characteristics, comparing different parts of the value chain (cradle-to-farmgate versus cradle-to-grave), or only using one footprint to pull conclusions on an item’s entire impact. These have led to some misconceptions, especially when inappropriately exploited by commercial interests to promote one product over another. For example, plant-based milks being touted by some as better for the environment than dairy.

The environmental impact of bovine milk has shown significant variation between different countries, right down to differences inter-regionally. This variation allows the impact assessment outputs to be picked in favour of marketing claims by competitors. When used to compare bovine milk to plant-based alternatives, LCAs can create oversimplified and misinterpreted conclusions such as assuming nutritional equivalence between products, or using global average impacts not representative of the variation between production systems. More appropriate use of LCAs in milk comparisons would be to compare plant-based milks with one another, or compare different farming systems and practises between countries.

This scenario exemplifies the potential misuse of the tool, and highlights a gap in the literature that LCAs are yet to fill when applied to delivery of nutrition. A focus has been placed on whole products and macronutrients, where LCAs give footprints per kg of product or, less commonly, per kg of protein. Micronutrients are yet to be explored and would be an instrumental addition when considering the entire impact of food. This has become even more critical as deficiencies in specific nutrients when feeding the global population have been suggested by the DELTA Model. This gap can be demonstrated in LCA comparisons of protein sources that claim protein powders are more efficient protein sources than cheeses, grains and beef when considering their environmental impacts. This study does not include the numerous micronutrients also received from the ‘less efficient’ protein sources.

Taking a holistic view, you could argue that given the interconnectivity of complex systems such as the food system, even seemingly unrelated factors can have indirect impacts on one another. LCAs can provide an excellent measurement tool when estimating the impact of products on individual environmental factors. However, the examples of misinterpretation and the opportunity for further research demonstrate how the application of LCAs can fall victim to tunnel vision when estimating a product’s true impact. This absence of a holistic view can produce results misleading for consumers. Narrow LCAs provide one piece of the puzzle and consideration should be made of the broader impacts the product has on our planet, our bank accounts, our health and our livelihoods.


Photo by Coffee with Joshua on Unsplash     

Trends in food security research

Read the article

A recent review of food security research, published in the scientific journal Land, highlights the growth of this field over the last 30 years, as well as the key global regions and topics that have been addressed.

Food security, the ability of people to reliably access sufficient food for a healthy life, is by no means guaranteed in all global regions. Disruptions to parts of the food system, such as natural disasters, climate change or disease outbreaks, are challenges to ensuring adequate food supply and nutrition to affected areas.

Surveying the existing scientific literature on food security, this review article found a dramatic increase in the number of publications since 2013. These publications were predominantly from developed European and North American nations, whereas the research focus was more often on developing areas of Asia and sub-Saharan Africa. Importantly, many developing countries in these regions have not produced research on food security, indicating a lack of research capacity where it is needed most.

The research directions encompassed by this review are diverse, from agriculture, environment and water through to food science, nutrition and public health. Article keywords often linked to food security include climate change, poverty and gender. Trends in food security research topics could be clearly identified over time.

Looking to the future, the authors recommend prioritisation of an interconnected and holistic view of food security. A complete view of the food system is needed to fully understand individual aspects within it.

Read the article


Photo by Marcela Laskoski on Unsplash     

What the global population thinks about climate change

Read the article

The United Nations Development Programme has conducted an online survey of 1.2 million people from 50 countries to hear their views on climate change. Food waste emerged as an important theme worldwide.

Renewable energy, conserving forest and land, and a transition to more sustainable transport were high on the list of policies that the surveyed population wanted to see prioritised. Also high was the adoption of climate-friendly farming techniques, though less so in countries dependent on large agricultural sectors.

Targeting food waste received more support than targeting energy waste. Plant-based diets received the least support of the policies posed in the survey, with 30% of respondents supportive.

The importance of climate change was greater in the minds of young people and decreased with age, but even in older age groups around 60% of respondents felt that climate change was a global emergency. Notably, almost half of the respondents were under the age of 18, the age group most likely to say that climate change is a global emergency in the survey. Thus, the overall results of the survey strongly reflect the feelings of younger generations.

The survey results largely reflect common discourse on climate change. The low popularity of plant-based diets to counter climate change, although often a feature in the scientific literature on sustainable nutrition, was unsurprising given the social importance of current omnivorous diets. More surprising and encouraging was the high popularity of reducing food waste, an area that shows great potential for improvement.

Read the article


Photo by Christin Hume on Unsplash    

Plight of the bumblebee

Read the article

Research in Global Change Biology has shown that cultivated land dependent on pollinators has increased by 137% over the last 50 years. Simultaneously, monoculture cropping has also increased, leaving pollinators challenged for diverse food sources at all times of the year.

Concerns over the decreasing population of many insect pollinators, particularly bees, are broadly heard. While many agricultural crops provide a food source for these insects, their seasonality means that they cannot be their sole food source. Expansion of monoculture agriculture leads to a decreasing diversity of available food sources for pollinators.

The article looks at global and regional trends, finding substantial differences in the degree of dependence on pollinators around the world. Generally, the greatest dependence on pollinators for successful cropping was in developing nations.

The article recommends the use of marginal land for pollinator-friendly plants and farmland heterogeneity, as conserving pollinator populations is essential to ongoing agricultural productivity.

Read the article


Photo by Santiago Esquivel on Unsplash   

Perspectives on buying local

Read the article

A discussion piece for the Sustainable Food Trust addresses whether the movement towards buying locally sourced food in developed nations is an appropriate behaviour for all, particularly lower income families.

The two main sides to this debate are that, while local food systems may have social advantages and keep the economic benefits of food production within the community, such activity is often expensive and not available to all. The article addresses to what extent either argument is true, and how widely repeated statements on food and nutrition may not reflect the true experiences of the majority of people.

The author ends with the need to understand the evidential basis of different points of view on local food, a conclusion that is applicable to the sustainable food system debate generally. Regarding the wisdom of buying local, there is no single answer. It is not always the case that locally produced food has a lower environmental footprint or better nutritional content than the alternatives, and this should not be assumed.

Read the article


Photo by Annie Spratt on Unsplash